AEDC-TR-81-34

" The Use of a Multi-Degree-of-Freedom Dual Balance
System to Measure Cross and
Cross-Coupling Derivatives

D.R. Haberman
Calspan Field Services, Inc.

April 1882

Final Raport for Period October 1, 1980 — November 1, 1881

Approved for public release; distribution unlimited.

ARNOLD ENGINEERING DEVELOPMENT CENTER
ARNOLD AIR FORCE STATION, TENNESSEE
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

TR ST LHTTEA]



NOTICES

When U. §. Government drawings, specifications, or other data are used for any purpose other than a
definitely related Government procurement operation, the Government thereby incurs no responsibility
nor any obligation whatsoever, and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or
otherwise, or in any manner licensing the holder or any other person Or corporation, or conveying any
rights or permission 1o manufacture, use, or sell any patented invention that may in any way be related
thereto.

Qualified users may obtain copies of this report from the Defense Technical Information Center.

References to named commercial products in this report are not to be considered in any sense as an
endorsement of the product by the United States Air Force or the Government.

This repart has been reviewed by the Office of Public Affairs (PA) and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public, including
foreign nations,

AFPROVAL STATEMENT

This report has been reviewed and approved.

ALVIN R, OBAL, Captain, CF
Diretorate of Technology
Deputy for Operations

Approved for publication:

FOR THE COMMANDER

Do 20
MARION L., LASTER

Director of Technology
Deputy for Operations



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered}

A
REPORT DOCUMENTATION PAGE BEF‘;gEDCg';gEg%ngN:ORM
1. REFQRT NUMBER 2. GOVT ACCESSION NG| 3 RECIPIENT'S CATALQG NUMBER
AEDC-TR-81-34
& TITLE (and Subtitle) 5. TYPE OF REPORT & PERIQD COVERED
THE USE OF A MULTI-DEGREE-OF-FREEDOM DUAL |Final Report - Oct. 1,
BALANCE SYSTEM TO MEASURE CROSS AND 1980 - Nov. 1, 1981
CROSS_COUPLING DERIVATIVES & PERFORMING O3G. REPDAT NUMBER
7 AUTHOR(=) 8@ CONTRACT OR GRANT NUMBER(s}
D. R. Haberman, Calspan Field Services,
Inc.
9 PERFORMING GRGANIZATION NAME AMD ADDRESS 10 PROGH&AM ERLEMENT PRDJECT TASK
Arnold Engineering Development Center/DOT AREA & WORK UNIT NUMBER
Air Force Systems Command Program Element 658C7F
Arnold Air Force Station, TN 37389
1, CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE
Arnold Engineering Development Center/DOS April 1982
Air Force Systems Command 13. NUMBER OF FAGES
Arnold Air Force Station, TN 37389 88
14, MONITCRING AGENCY NAME & ADDRESS' ! difforant from Cortrallimg Olfiroe) 15. SECURITY CL ASS. (of ihin repori)
UNCLASSIFIED

15a, ?g&é&ﬁfi{lCATION-’DOWNGRAD!NG
N/A

16. DISTRIBUITION STATEMENT rof thrs Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTICON STATEMENT (of the abatract enterad 1o Block 20, If diifersnt from Report)

18. SUPPLEMENTARY NOTES

Avallable in Defense Technical Information Center (DTIC).

18. KEY¥ WORDS (Continue on reverae clde if necessary and identily by block number}

balances deflection
derivatives damping
interferometry mathematical models
degrees of freedom wind tunnel tests
strain gages dynamics

20 ABSTRACT (Conifnue on raverse afde if negeaaary and Ideatify by bleck numbar)

The equations of motion are derived for two existing dual
balance systems used at the Arncld Engineering Development Center
(AEDC) to obtaln measurements of aerodynamic cross and cross-
coupling derivatives. The complete equations of motion pre-
sented include the effects of sting motion. Hach system incor-
porates a dynamic cross flexure balance and a five-component
gtatic balance. The primary deflection modes of the balances

DD , oM, 1473  =0iTion oF 1 nov 6515 oasOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE [#hen Data Entered)




UNCLASSIFIED

SECURITY CLASSIFICATION DF THIS PAGE{When Dara Enterad)

20. ABSTRACT (Continued)

were confirmed using a holographic interferometry
measurement technigque. Both laboratory and wind tunnel
data are presented to illustrate dynamic effectis.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Fhen Doila Eninred)




AEDC-TR-81-34

PREFACE

The work reported herein was performed by the Arnold Engineering Development
Center (AEDC), Air Force Systems Command (AFSC), at the request of the AEDC Direc-
torate of Technology (DOT) under Program Element 65807F. The AEDC/DOT project
manager was Capt. A. R. Obal (CF). The results were obtained by Calspan Field Services,
Inc./AEDC Division, operating contractor for the aerospace flight dynamics testing effort
at the AEDC, AFSC, Arnold Air Force Station, Tennessee, under AEDC Project Number
D215VW. The manuscript was submitted for publication on November 11, 1981.

The author acknowledges the invaluable assistance of Dr. Reinhard Menzel and Mr.
Frank Hornsby, Calspan Field Services, Inc., in making the holographic interferometry
measurements.



AEDC-TR-81-34

CONTENTS
Page
1.0 INTRODUCTION ..ottt ittt tsteaiasinraaresereseanannnnnnas 5
2.0 BALANCE DEFLECTION MODES AND DYNAMIC MODEL
DEVELOPMENT
2.1 Pitch/YawModels ... .ottt i i e i e e 7
2.2 RollModel ... . ittt e e e e 9
3.0 BALANCEEQUATIONSOFMOTION ........iiiiiiirirarnrocnecacacnnns 10
4.0 EQUATIONS OF MOTION WITH STING BENDING MOTION INCLUDED ... 12
5.0 DATA REDUCTION
5.1 Pitch/Yaw Data Reduction ..................... WA eerarerararaaaens 13
5.2 RollData Reduction ..........c0ctiiiiiir i iniininereransioeeaannnoneens 16
6.0 CORRECTION OF EXISTING CROSS-COUPLING ROLL DATA ............ 17
T CONCLUSIONS L. it iat ettt teserorsranneansnsnasannnns 19
REFE RENCES ... .ttt iiitaraett et tstnasstananaracesnnanasesss 21
ILLUSTRATIONS
Figure
1. The 1,500-1b Force-Moment Balance Used for Measurement of Cross
and Cross-Coupling Derivatives ............c.viiiiiiiiiiniriinriranceeaanns 23
2. The 1,500-1b Moment Balance Used for Measurement of Cross and
Cross-Coupling Derivatives ...........ctiitiiniiinr e arersrsresnssanes 24
3. Three-Degree-of-Freedom Models of the Pitch and Yaw Planes of the
Force-Moment Balance .........c.civviiiiiereioneiniieiarerenrnnanenareens 26
4. Three-Degree-of-Freedom Models of the Pitch or Yaw Plane of the
Moment Balance .. .oc.oiviiit i i e e e 28
5. Two-Degrec-of-Freedom Models of the Pitch and Yaw Planes of the
Force-Moment Balance ......c.cuviiieiioaininenininieiienenernennenannss 29
6. Two-Degree-of-Freedom Model of the Pitch or Yaw Plane of the Moment Balance . 31
7. Yaw Plane Deflection Modes of the Force-Moment Balance ............c00n.... 32
8. DynamicModelin Roll ..., . ... . iiirririiiiiianterrrcreronnenaaneens 33
9. Dynamic Model of the Three-Degree-of-Freedom Force-Moment
Balance System Including Two Degrees of Freedom of the Supporting Sting ... .... 34
10. Dynamic Model of the Three-Degree-of-Freedom Moment Balance System
In¢cluding Two Degrees of Freedom of the Supporting Sting .............o0vvuues 36
11. Laboratory Roll Data Corrected Using the Multi-Degree-of-Freedom Approach ... 37



AEDC-TR-81-34

Figure . Page
12. Roll Data From a Current Fighter Configuration Corrected Using the
Multi-Degree-of- Freedom Approach ..........c it iiiiiiiiiiriinriainannns 38
13. Wind Tunnel SDM Roll Data Corrected Using the
Multi-Degree-of-Freedom Approach. ....... ittt iiiiiiieinisntnantenenn. 39
TABLES
1. Pitch/Yaw Equations of Motion for the Force-Moment Balance ................. 40
2. Pitch/Yaw Equations of Motion for the Moment Balance ...................... 42
3. RollEquations of MOtIOn ....... ... i ittt inanarrrnnnrns 43
4. Equations of Motion for the Force-Moment Balance Including
Two Degrees of Freedom of the Supporting Sting ...........cciiiiiiiiiieranes 44
5. Equations of Motion for the Moment Balance Including Two Degrees
of Freedom of the Supporting Sting ...... ..ottt iiiieieiniarreiananans 46
APPENDIXES
A. BALANCE DEFLECTION MODE DETERMINATIONS ..............c. 0.0 47
B. DETAILS OF BALANCE EQUATION OF MOTION DERIVATIONS ......... 55
C. THE DETERMINATION OF CONSTANTS NEEDED FOR DATA
REDUCTTION ..ottt it e e e et et e e e e eaneannn 72
D. THE EFFECT OF NEGLECTING THE AERODYNAMIC DAMPING
CONSTANT FROM THE DATA REDUCTION PROCEDURE ............... 78
NOMENCLATURE ... ..ottt s isreraerntsnenarareniortiesacasactannns 83



AEDC-TR-81-34

1.0 INTRODUCTION

During the past four to five years, two 1,500-Ib balances were developed to measure
acrodynamic cross and cross-coupling derivatives at the Arnold Engineering
Development Center (AEDC). One of these cross-coupling (C.C.) balances was built to
be mounted on the 1,500-1b forced oscillation pitch/yaw cross flexure (C.F.) balance
used primarily in the Propulsion Wind Tunnel (PWT) facility. The other was developed
primarily to fit the 1,200-1b pitch/yaw C.F. balance in the von Karman Facility (VKF). The
purpose of combining a C.C. balance with a C.F. balance was to enable the
measurement of the forces and moments in the pitch, yaw, or roll planes that are
produced by oscillating a model in a single plane with a C.F. balance. Both balance
combinations have been tested in the laboratory, and, in addition, the PWT
combination was used in a test in Tunnel 4T to make cross and cross-coupling
measurements on the standard dynamics model {SDM) in December 1980.

Following fabrication of the balances, each was laboratory tested to determine
the accuracy with which a known applied moment vector could be measured. As was
expected, the use of statically obtained balance gage sensitivities to reduce dynamic
data resulted in a difference between the applied laboratory moment vector and the
measured moment vector. The difference in the vectors was attributable to the
balance deflections, which, under dynamic loading conditions, were caused by the
model and balance inertias, as well as the externally applied loads. The purpose of
this report is to present the equations of motion of the subject balances which would
enable a more accurate measurement of such dynamic load vectors in the future.
Although other problems with making such measurements do exist, such as nonlinear
load interactions between different balance gages, it is not the intent of this report
to cover any subject other than the dynamic modeling of the balance motion and, the
development of the relevant equations of motion.

A statically obtained balance sensitivity reflects the stress imposed on a balance
gage element (or beam) caused by a known statically applied load. The stress produces
a strain in the beam, and a strain gage mounted on the beam converts this strain into
an electrical output. Under dynamic loading conditions no distinction can be made
between the strain caused by an inertia load and that caused by an external or
aerodynamic load unless the system is mathematically modeled and analytically
solved for the external loads. To account analytically for the inertia loads, the
sting/balance/model system must be accurately modeled to include all of the degrees
of freedom experienced by the system. The equations of motion for this system can
then be solved for the externally applied loads. Although it is possible to write the
equations to include all degrees of freedom, it is difficult to instrument a balance to
measure all these quantities. Some compromises must be made to keep the
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instrumentation and data reduction requirements reasonable. Therefore, only the primary
degrees of freedom can be measured and accounted for in the equations of motion, and
these primary degrees of freedom may vary, depending on balance type.

The equations of motion for the subject AEDC systems and the system models to
which they apply are presented in this report. The methods of derivation of these
equations are not new and are fairly general in applicability. However, the specific
equations for a given system are unique to that system and other systems with similar
primary degrees of freedom. Hanff (Ref. 1) did a similar equation development for the
system at NRC in Canada, but his equations are not totally applicable to the AEDC
systems because of the additional degrees of freedom added by the relatively flexible
stings used at AEDC. Differences in equations of motion also arise because of the
different types of balances used at AEDC. The equations of motion for the balance
developed in PWT, a force-moment balance, are different from the equations of motion
for the balance developed in VKF, a moment balance, because the force gage is
designed for primary compliance in translation, whereas the moment gage is primarily
rotational. In the application of any equation, the system model to which the
equations apply must compare with the system to which the equations are to be used,
or ¢rrors will result.

The roll equations are somewhat different from the pitch/yaw equations because all
degrees of freedom rotate about the same axis. However, the same roll model and resulting
equation apply to both of the subject systems. To illustrate the magnitude of correction
resulting from the dynamic modeling of a multi-degree-of-freedom (DOF) roll balance,
some cross-coupling roll data taken on an earlier test were reduced using the dynamic
equation of motion in roll. These data are presented in this report, along with the same data
reduced using the static roll sensitivity,

2.0 BALANCE DEFLECTION MODES AND DYNAMIC MODEL DEVELOPMENT

In principle, each cross-coupling (C.C.) balance is similar to a five-component static
force balance. Each balance is designed and gaged to measure a force or a moment, i.e., a
shear or bending strain, at each of two balance stations in the pitch plane and in the yaw
plane. In addition, each balance has a roll element gaged to measure strain caused by roll,
which brings the total loads measured to five. The roll element station is physically located
between the fore and aft pitch/yaw elements on both of the subject balances. To keep the
balances as rigid as possible, they lack axial force gages.l The main difference from a
standard static balance, however, is a result of the requirement that a cross flexure (C.F.)
balance be mounted internal to the C.C. balance. To meet this requirement the C.C.
balances are built in the shape of a can to fit over the C.F. balance. The force-moment and
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moment balances are illustrated in Figs. 1 and 2a, respectively. The hollow center, illustrated
by the cross-sectional view of each balance, is the cavity into which a C.F. balance is fit, The
internal mounting of the C._F. balance within the C,C. moment balance is illustrated in the
cutaway view of Fig. 2b.

In providing a measurement of the moment or force at a particular station, the balances
are, in essence, providing an electrical output which is proportional to the balance deflection
at that station. With the proper handling these moment and force measurements can be
converted into deflections of these flexible balance stations, as will be discussed later in Sec.
3.0. The forward gaged station of the force-moment balance is designed and gaged (with
strain gages) to provide an electrical output signal proportional to pitching moment and side
force; i.e., it has a pitching moment element and a side force element. The pitching moment
gages sense the bending strain to which they are subjected, and the side force gages sense the
shear strain to which they are subjected. These two sets of gages are approximately centered
about the same forward axial station of the balance, as are the two sets of gages at the aft
station. Unlike the forward station, the aft gaged station is designed and gaged to provide
electrical outputs proportional to yawing moment and normal force. The roll section,
located between the fore ahd aft gaged stations, is gaged to sense shear strain produced by a
rolling moment. The moment balance is different in that both the forward and aft pitch/yaw
gaged stations are gaged to sense bending moment in both the pitch and yaw planes.

It is assumed that all parts of the balances are perfectly rigid except for the gaged
stations. In reality each gaged station can undergo deflections other than those for which it is
gaged. Although the forward station of the moment balance is gaged to sense vaw and pitch
bending moment (rotational degrees of freedom), it can still undergo deflections caused by
yaw and pitch shear loads (translational degrees of freedom) even though these deflections
do not provide an electrical output, These extraneous degrees of freedom are limited to
small deflections by making the gaged beams as short as possible, thus limiting deflection
attributable to ““S’" bending. In like manner the forward station of the force-moment
balance is given maximum compliance to side shear load and pitch bending load by
designing the balance cross section to have a high second moment of area about the z axis
and a relatively low second moment of area about the y axis. The aft station is similarly
designed.

2.1 PITCH/YAW MODELS f

If the deflections monitored by the strain gages are considered to be the primary
deflection modes of the balance, then the dynamic model of the moment balance pitch and
yaw planes is different from the dynamic models of the force-moment balance. The moment
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balance has two rotational degrees of freedom each in the pitch and yaw planes, whereas the
force-moment balance has one translational and one rotational degree of freedom in the
pitch plane and the yaw plane. The roll station of each balance must also be considered to be
a flexible member. It is assumed to add an additional rotational degree of freedom to each
balance model. The resulting three-degree-of-freedom (3-DOF) models of the force-moment
and moment balances in the pitch and yaw planes are illustrated in Figs. 3 and 4,
respectively. One model applies to either the pitch or yaw plane for the moment balance,
since all deflections are rotational. Two models are required for the force-morment balance,
one in pitch and one in yaw. The translational degree of freedom is located at the front of
the balance in the yaw plane and at the rear in the pitch plane.

Two-degree-of-freedom (2-DOF) models for the same systems are shown in Figs. 5 and
6. The 3-DOF models of the balance illustrated in Figs. 3 and 4 depict the motion of the
balance more exactly than the 2-DOF models illustrated in Fiés. 5 and 6, in which the roll
gage elements have been omitted. The omission of the roll gage element implies that they are
rigid in pitch and yaw, which is not exactly correct. However, the roll gage elements are
designed to be much more rigid in pitch and yaw than the fore and aft pitch and yaw gages,
and little error is introduced by their omission. In addition, the roll elements are not
provided with strain gages to measure pitch or yaw deflection and their inclusion in the
models and equations of motion would be of little use without a means to obtain the
deflection data. Therefore, the simpler 2-DOF systems are more applicable to the balances
as they now exist.

Figures 3 through 6 illustrate two types of motion that are possible in each plane: out-of-
plane motion and in-plane motion. The out-of-plane motion is considered to be that motion
experienced by a balance in the plane perpendicular to the oscillation plane of the C.F.
balance. For example, if a balance is being oscillated in pitch, the out-of-plane motion
would be the motion experienced by the balance in the yaw plane. Under ideal conditions
this motion is produced by external forces only and not by the forced oscillation of the C.F.
balance, In reality some inertial coupling exists between the two planes, caused by nonzero
cross products of inertia causing an inertial moment as well. These cross product inertial
loads represent a tare which must be subtracted from out-of-plane balance output to arrive
at a measurement of the externally applied loads. Tare levels such as these are typically
measured under vacuum in a laboratory where no externally applied loads, e.g.,
aercdynamic loads, are present.

The in-plane motion is the motion experienced by the balance in the plane of oscillation,
In this plane the balance experiences the model and balance inertial loads imposed by the
forced oscillation of the C.F, balances, as well as externally applied loads. These inertial
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loads plus some cross product inertial loads represent a tare level on the in-plane balance
output. Again, this tare level output can be obtained under vacuum conditions, When
speaking in terms of aerodynamic loads, direct derivatives are sensed by the in-plane gages,
and cross or cross-coupling derivatives are sensed by the out-of-plane gages.

To verify that the correct deflection modes of the force-moment balance were assumed,
the balance deflections were measured under load using an holographic interferometrj
technigue. By this technique, the deflection of the balance along its entire length was
determined from a photographic record of the balance with superimposed interference
fringes. Each successive fringe on the balance surface represents the deflection of the
balance through one wavelength of the light used for illumination, in this case a helium-neon
laser beam with a wavelength of 0.6328 um. Details of the holographic interferometry
technique are presented in Appendix A. Some results of the deflection measurements are
shown in Fig. 7, where the deflections of the force-moment balance in the yaw plane are
graphically illustrated. The plots clearly show that the primary deflections of the balance at
the flexible stations are those deflections for which it is gaged. For example, in the yaw plane
the force-moment balance has a force gage at the forward flexible station and a moment
gage at the aft flexible station. The deflection curve (Fig. 7} illustrates a large translational
deflection at the forward station and a large rotational deflection at the aft station, as would
be expected. Accompanying the large translational deflection at the forward station is a
small rotational deflection. This is an example of an extraneous deflection mentioned earlier
which cannot be avoided in any real physical system. The deflection curves also illustrate the
deflections of the middle flexible stations, the roll gage elements, which are currently not
gaged to measure these deflections. However, they are relatively small compared to the
primary deflections. To measure the balance deflections (and, consequently, the model
motion) more correctly, the balance would have to* be gaged for all of the deflections
illustrated by the deflective curve., However, as with most experimental measurements,
tradeoffs between cost and ease of instrumentation must be weighed against accuracy. The
dynamic data acquisition system used at AEDC does not currently have the capacity to
handle the number of gages required to instrument the balances to measure the deflections in
all degrees of freedom. It is unlikely that the accuracy gained would justify the additional
cost.

2,2 ROLL MODEL

The rolling motion model of the balances is somewhat different from the pitch or yaw
models illustrated in Figs. 3 through 6 since alt degrees of freedom rotate about the same
axis. For roll motion each balance is assumed to have a roll degree of freedom at each gaged
station. In addition, laboratory tests of both of the counterpart C.F. balances have shown
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that the C.F. balances have more flexibility in roll than the C.C. balances. Therefore, the
motion of the C.F. balance in roll must be accounted for as well as the motion of the C.C.
balance. The dynamic model of the system in roll is illustrated in Fig. 8. This model applies
to both the force-moment and the moment balance systems.

3.0 BALANCE EQUATIONS OF MOTION

The equations of motion for the force-moment and moment balances as depicted by the
models shown in Figs. 3, 4, 5, and 6 are given in Tables 1 and 2. The equation of motion in
roll for the dynamic model shown in Fig. 8 is given in Table 3. The Lagrange method, as
described in Ref. 2, was used for all derivations. Details of the derivations are presented in
Appendix B.

Note that the balance rotational and translation deflection measurements 9, (—)2, 0,,Z,
and Z, are input into equations and not moments and forces as would be done for a static
balance. This imposes the requirement that a spring constant (k) in terms of deflection/load
of each gaged station must be known as well as the standard sensitivity (s) in terms of
voltage/load. These two constanis, used in conjunction with the voltage signal (E) from thé
gage, provide the proper input to the equations as follows.

(E)k/5) = © (or 2) W

It must also be noted that the balance gage element deflections, © and Z, are amplitudes
of sinusoidal gage oscillations, since the C.C. balance is being forced to oscillate sinusoidally
by the C.F. balance. A linear dependence between the balance oscillation and the forces
produced from the oscillation is assumed. Therefore, the gage deflections (amplitudes) are
vector quantities, i.e., they have phase, which is measured relative to the constant amplitude
forcing function of the C.F. balance, as well as magnitude, and must be input as such into
the equations.

The constants in the equations include some lengths and masses which are not considered
for a static measurement. These masses must be calculated from the known balance
dimensions and the material (usually steel) density. They represent the partial balance
masses between consecutive gages (represented by springs in Figs. 3 through 6). The locations
of the centers of gravity (c.g.) of these masses (&, f-,, and fc3) must also be calculated from
the known balance dimensions. Although these calculations could be subject to slight error
because of the neglect of the strain gage mass, connecting wire mass, and possible error in
the material density assumed, a close estimate of the masses used in the equations of motion

10
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would provide a more correct result than would complete neglect of the masses.

The equations of motion given in Tables 1, 2, and 3 also include some tare damping
constants, as well as some aerodynamic damping and restoring moment constants. The tare
damping constants, which are discussed in Appendix C represent the mechanical damping
inherent in the gage elements themselves. The aerodynamic ‘‘constants’’ such as kawn and
Co, ., FEPTESENE the restoring moment (aerodynamic spring constant) and damping moment
resulting from aerodynamic effects. They are the same parameters that would be obtained
from a standard forced oscillation pitch, yaw, or roll test, the direct damping derivatives. If
a balance could be perfectly rigid and still measure the required cross or cross-coupling
moments, the inclusion of these aerodynamic terms would not be necessary. However, when
a cross or cross-coupling moment is applied to a flexible balance, a motion results, and the
damping and restoring moment of the air surrounding the balance {model) is a result of the
balance motion and is not part of the cross or cross-coupling moment being measured. The
aerodynamic restoring moment and damping moment are represented schematically by a
spring and a damper attached to ground (inertial reference frame), as illustrated in Figs. 3
through 6 and Fig. 8.

The magnitude of the aerodynamic restoring moment is very small relative to other
spring constants in the equations, and generally can be neglected. However, the
aerodynamic damping moment can possibly be of the same magnitude or greater in
magnitude than the cross or cross-coupling damping moment itself, and, if possible, it
should be included in the data reduction. If it were not included in the reduction, the phase
of the data signal from the balance could be misconstrued as being the phase of the cross or
cross-coupling moment when, in reality, it is a phase shift caused by acrodynamic damping.
In most cases if a test is being run to determine cross or cross-coupling derivatives, some
knowledge of the direct damping derivatives will be available. If these direct derivatives are
not known, then an analysis of the error that could result from their exclusion should be
conducted before proceeding with the test. An example of the error that can result from
neglecting Ceero is given in Appendix D.

The roll equation of motion is somewhat simpler than the pitch or yaw equations because
all of the balance masses and the model mass rotate about the same axis, the balance x axis.
The system is merely a series of masses connected by a series of springs. If the moments of
inertia of the intermediate balance masses are neglected, the problem reduces to a single
degree-of-freedom system with a single natural frequency determined by the model mass and
the total spring constant, Naturally, the total spring constant is the resultant of the series of
springs represented by the three balance gages plus the C.F. balance spring. Each of these

11
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four entities has its own spring constant in roll as well as pitch and yaw. However, only one
of the gages is actually gaged to measure roll deflection, the roll gage of the C.C, balance.
Through suitable substitutions, the complete equation of roll motion [Eq. (1)} given in Table
3 can be reduced to a much simpler equation [Eq. (2)] which involves the ratio of the
oscillation frequency to the natural frequency of the total system in roll and the standard
moment measurement from the balance.

4.0  EQUATIONS OF MOTION WITH STING BENDING MOTION INCLUDED

The equations discussed in the previous section are limited in application to cases where
the balance mount is either fixed in an inertial reference frame or the balance mount is
rotating about a center of rotation which is fixed in an inertial frame. In reality the sting to
which the balances are mounted is not a good basis for an inertial reference frame, for the
sting itself is oscillating. If it is assumed that the hub to which the sting is mounted is fairly
rigid, then accounting for the sting motion between the hub and the balance will account for
the total motion of the balance sections relative to an inertial frame.

As was done by Burt in Ref. 3, the sting motion was considered to be a combination of a
pure rotation about the balance center of rotation (6, and a pure translation of the center of
rotation (z;). Including these motions in the previous models (Figs. 3 through 6) results in the
models shown in Figs. 9 and 10. The equations of motion describing these systems are given
in Tables 4 and 5. These equations are similar to the previous equations of Tables 1 and 2
except they include sting translation (z)) and rotation () terms.The sting must be
instrumented and calibrated in a manner similar to the balance gages to pravide outputs
proportional to the sting deflections. However, all stings that are currently used for dynamic
forced oscillation testing are already instrumented and calibrated for sting deflections, so
this particular requirement is not new or unusual to AEDC testing.

The equations without sting bending, Tables 1 and 2, are actually a special case of Tables
4 and 5. If the sting degrees of freedom, z,, and 6, are sel to zero, the equations of Tables 1
and 2 result. It must be remembered that the force or moment vector on the right-hand side
of any of these equations represents the total load measured. When wind tunnel data are
reduced with these equations, the total load is the aerodynamic load plus any mechanical
damping or inertial tares experienced by the balance. These tares must be measured in the
laboratory and subtracted from the total load to yield the acrodynamic load, as discussed in
Sec. 2.1.

"12
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5.0 DATA REDUCTION

As discussed earlier in Sec. 3.0, knowing that the C.F. balance motion (8,) is sinusoidal
and assuming a linear dependence between the balance motion and the resulting
aerodynamic forces on the C.C. balance (model), the resulting balance outputs are
sinusoidal, i.e., they are vector quantities with phase as well as magnitude. The time-
dependent gage outputs, which reflect gage deflections, can be represented as follows:

. = Qe - = Zaaiwt
f; = Gt z; = Zelw

The amplitudes of the motions (§j and Ej) have both phase and magnitude and can be
represented as -
gj = Bje"‘fi ij = ,-ei'fi

These complex or vector amplitudes are the experimentally determined quantities which
musi be input into the equations of motion given in Tables 1 through 5. With the current
AEDC data acquisition and processing technique used for acquisition of dynamic forced
oscillation data, these quantities can be routinely acquired for use in the equations of
motion.

5.1 PITCH/YAW DATA REDUCTION

When all of the mass constants, moment of inertia constants, length constants, spring
constants, and damping constants are evaluated and inpur into one of the equations of
motion, and after the oscillation frequency (w) for a particular test case is measured and
input, the equations reduce to the following form.

RO 4+ LiP;; = M
— — " ()
(and.n‘or Rij} (and/nr i szj) (or ?)
In this equation R; and P, are mass or inertia constants and M (or F) is the externally applied

load vector measured by the balance. Combining terms and writing the equation in complex
form, the above equation reduces to the following:

a+bi=M(rF) _ 3
where
M (or F) = Meir (or Fei)

13
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The magnitude and phase of the measured moment or force vector is defined in the usual
manner, i.e.,

M = a2 + b2

¥ = tan! b/a
where a is the real and b the imaginary component of the complex number. These quantities
are the magnitude and phase of the aerodynamic or other externally applied load which is
applied to the particular gage in question. If the data are to be presented in an “in-phase-
with-position” and an “‘out-of-phase-with-position®* format, then these quantities are
identically a and b, respectively.

In most cases the moments or forces measured at a particular gage location are not the
result that is sought. Instead the balance measurements must be converted into a force and a
moement about a selected reference point. For a moment balance and a force-moment
balance the equations which convert the data into a force and moment about a selected
reference point are as follows:

8

Moment Balance

F_ M|—M; (a-a3) + i(brb)

- = (a + ib)force (4)
¢ {
where
M, = moment measured at forward balance station
ﬁ3 = moment measured at rear balance station
= 33 + ib3
£ = absolute distance between balance gage stations
and
F = calculated force vector.
Meer = My + F (% -xger) = {a + ib)moment )
AT XREF
where

14



Mgper = moment referenced to reference point Xppp

X|-Xggr = distance from the forward balance gage center
to the model reference point using the sign
conventions illustrated in Figs. 1 and 2.

Force-Moment Balance (Yaw Plane)

;= a; + iby M; = a; + ibs
Mper = M; + Fl(xmnmem 'xREF)
Eage
where
F, = measured force vector, 8, + ib,
M, = measured moment vector, a; + i b,
Mg = moment about reference point Xggg
and
XmomenXRgr = distance from moment gage center to
sage reference point Xy measured positive

toward the front.

AEDC-TR-81-34

(6

The pitch plane equations are similar to those presented earlier except that subsé‘ripts of
the force (F) and moment (M) are swapped because of the position reversal of the

corresponding gages in the pitch plane.

Knowledge of the magnitude and phase of both the force vector and the moment vector
enables the calculation of the required derivatives. However, it must be kept in mind that the
phases of the force and moment must be known relative to the total model motion, and total
model motion is represented by the total rotational vector and the total translational vector,
which will be called ©1 and Zl- for pitch plane motion. If the phase angles of the pitch plane
force and moment vectors relative to O are given by T and Ty then the required pitch

plane damping and restoring moment derivatives are calculated as follows:

M cos % M sin ¥
et wOT

F cos v F sin vy
o7 wOT

15
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Similar calculations are required for the yaw plane.
5.2 ROLL DATA REDUCTION

The roll data reduction equation reduces to a simple form [Eq. (2) of Table 3] which uses
the standard rolling moment measurement from the balance rather than the angular
deflection measurements as inputs to the equation. The equation includes several constants
which must be determined experimentally, i.e., o, o’ 2’ K20 and k ;1. The remaining con-
stant C e 1s the aerodynamic roll damping constant which either must be known from the
results of a previous direct derivative wind tunnel investigation, must be estimated in some
manner, or must be assumed zero, The effect that Corer, has on the data reduction cannot be
stated in one general rule. Its relative importance depends on the phase angle of the data
signal which is configuration and attitude dependent. The effect of assuming this constant 10
be zero is illustrated in Appendix D for a specific case.

The term k., is the total spring constant of the two-balance system in roll, assuming
that all of the flexible balance sections have a degree of freedom in roll, including the C.F.
balance, and that these separate sections are connected in series-to form a total Spring con-
stant. The roll inertia of the balance parts connecting these separate sections (springs) is
ignored, and the system is assumed to exhibit one natural frequency characteristic of the
total spring constant. This assumption has been shown to be accurate from spectral analysis
results of both C.C. balances. Each balance exhibits one predominant natural frequency
rather than one frequency for each mode of vibration. With the wind tunnel model
mounted, this natural frequency is the @l mentioned earlier, and this constant may
change for each model configuration for which data are taken and reduced. On the other
hand the ki, constant will likely never change for a particular balance throughout a test
program unless the balance is somehow changed. The constant ¢,/k;, is the ratio of the
mechanical damping of the roll section of the balance to the spring constant of that section.
The determination of this constant is discussed in Appendix C.

As with the previous pitch and yaw data, the moment signal (kztfz) from the balance isa
vector quantity and has magnitude and phase relative to the model position vector. Since the
quantity in brackets [Eq. (2), Table 3] is also a vector or complex quantity, the equation
takes the following form after all of the constants and the data vector are input.

My e ][1/p eity] = Myeir M

The equation in this form illustrates the *‘demagnification'' and phase shifting effected by
the bracketed term of Eq. (2), Table 3. The magnitude of the rolling moment signal (M;) is

16
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decreased by the muitiplicative constant 1/u, and the phase is shifted by the phase of the
bracketed vector, Ay. Close examination of the bracketed term in Eq. (2), Table 3 reveals
that the frequency ratio (w/w ) is the primary influence on the multiplicative constant 1/p
and that the damping constants are the primary influence on phase shift. These effects are
illustrated in Appendix D.

6.0 CORRECTION OF EXISTING CROSS-COUPLING ROLL DATA

To confirm that the roll data reduction equation was indeed serving to produce a correct
moment reading from the flexible C.C. balance, some previously obtained laboratory data
were reduced using Eq. (2) of Table 3. The rolling moment laboratory data were induced by
oscillating a dynamically unbalanced (I, # 0) calibration body in pitch. The applied rolling
moment was calculated from the known L, and the oscillation frequency and amplitude.
Data were taken for several values of the oscillation to total natural frequency ratio by
changing the moment of inertia (I} of the calibration body. The rolling moment balance
output was reduced in two ways: by simply applying the statically obtained roll gage
sensitivity to the roll gage signal, and by using the roll equation as given in Table 3. The
constant ¢,/k, was too small to be resolved and was assumed to be zero. A plot of the results
is shown in Fig. 11 where the measured to applied load ratio is plotted as the ordinate and
the frequency ratio is plotted as the abscissa. The roll equation of motion of Table 3 clearly
carrects the data for the majority of the dynamic effects.

To illustrate the application of the roll data reduction equation to some wind tunnel
data, and to illustrate the magnitude of corrections to such data, the results from two past
tests were corrected using a form of Eq. (2) of Table 3. The first source of such data was the
wind tunnel tests conducted on a model of a current fighter configuration in June 1978. The
uncorrected data, which were originally reduced using static calibration sensitivities, are
illustrated in Ref. 4. These data were obtained with a 4,000-Ib dual-balance system similar to
the 1,500-1b force-moment system discussed herein. Tests of a standard dynamics model
(SDM) run in December 1980 were the second source of data. These data were obtained
using the 1,500-1b force-moment C.C. balance illustrated in Fig. 1.

Using the system natural frequency and the system damping factor obtained by
Buchanan in Ref. 4, the roll data reduction equation was first applied to the cross-coupling
roll data assuming Coero to be zero. The corrected and uncorrected data are illusirated in .
Fig. 12, The correction equation used was

M, = 0.868 ¢i0.033 M, ®
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The largest absolute correction was obviously made to the data of the highest magnitude. In
this case the magnification effect resulting from balance dynamics was the overwhelming
correction influence. On the other hand, the low magnitude data actually had a larger
percentage correction in many cases attributable to the gage mechanical damping phase shift
effects. In one case where qu + G, was near zero, the correction even caused a sign reversal
from the original data. However, these magnitudes are too low to be of practical interest to a
user of the data,

Since the direct roll damping data were also available from this test program, the same
data were reduced, including the effects of the aerodynamic damping (c¢aem) on the data.
The correction equation including the effects of Chpero is

M, = 0.869 0053 M, (9

These data have not been plotted since the added aerodynamic damping effect produced no
noticeable change in the corrected data.

The effects of the correction of the SDM data are illustrated in Fig. 13. Because of the
low moment of inertia (I,) of the SDM model, the ratio of the oscillation to total natural
frequency was relatively low and, consequently, the correction was fairly small. The
equation used to correct these data was

M, = 0.971 ¢i0.001 M, (10)

This correction equation includes the effect of aerodynamic damping, which was known
from direct derivative tests of the same model.

The correction equations for the fighter data and the SDM data indicate minimum
corrections of 13 and 3 percent, respectively. In these cases no extremely large corrections
occurred because the phase angle of the balance signal was not near a multiple of 90 deg.
Had this occurred in conjunction with the phase correction required for the fighter data,
large corrections in the data could have occurred. In fact, this did occur on several of the
data points, but the magnitude of the coefficients in these cases was small enough to render
the moments themselves, let alone the correction, unimportant, Since the phase of the cross
or cross-coupling rolling moment is configuration and attitude sensitive, it is almost
impossible to predict from one model to another whether the corrections will be significant.
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7.0 CONCLUSIONS

The equations of motion for the two C,C. balances used at AEDC have been derived and
presented for use in future cross and cross-coupling data reduction procedures. These
equations enable statically obtained balance gage sensitivities to be used in the reduction of
dynamic loads. Although all balance motions must be measured and accounted for in order
to define an external load exactly, only the primary motions have been included in these
derivations. These include the motions for which the balances are gaged, the lateral rotation
of the balance roll gage element, and two degrees of freedom of sting motion. The primary
deflections of the balance, i.e., the motions for which the balance is gaged, have been
measured under load, and bave been shown to be the most significant deflections of the
balance. On the other hand, the lateral rotational motion of the roll gage, which was also
included in the equations of motion, proved to be insignificant. P

Selected cross-coupling roll data previously obtained in the laboratory, as well as some
selected wind tunnel roll data, were corrected using the dynamic equations. The effects of
corrections afforded by the dynamic equation, the effects of ignoring acrodynamic damping
in the measurement of cross and cross-coupling derivatives, and the results of the balance
deflection measurements are summarized in the following concluding remarks:

1. The primary deflections undergone by the two subject balances are indeed the
deflections for which the balances are gaged.

a. The lateral rotational deflections of the roll gage elements are small if at all
measurable and can be excluded from the equations of motion.

b. The rotational (bending) deflection of a gage element primarily designed for
translational (shear) deflection is measureable. The definition of the externally
applied dynamic loads would be more exact by including measurements of these
deflections, although the effect on accuracy would be small.

2. The use of the dynamic equations of motion in correcting cross-coupling roll data
has shown varied effects on dynamic moment calculation.

a. The roll equation, for which the correction magnitude varies inversely with the

natural frequency of the dual-balance system in roll (mnmm), corrected the
laboratory roll data to within two percent of the applied cross-coupling load.
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b. Application of the dynamic roll equation to data from a modern fighter aircraft
resulted in significant correction (13 percent) to the higher magnitude data.

¢. Application of the dynamic roll equation to data from the Standard Dynamics
Model taken with the subject force-momént balance system resulted in relatively
small corrections { <3 percent).

d. It is unlikely that a general rule regarding the significance of the correction to
dynamic data from varied models will be established, since the magnitude of the
correction depends on the phase of the cross-coupling moment signal, which is
configuration and attitude dependent.

3. Neglecting aerodynamic damping in the calculation of cross or cross-coupling
moments could result in significant percentage errors in the damping moment when
measured phase angles are near 0 or 180 deg.

The details of the work which led to these conclusions are presented in Appendixes A
through D. The balance deflection mode determinations and the equation of motion
derivations which result from mathematically modeling the confirmed deflection modes are
presented in Appendixes A and B, respectively. Methods for determining the eguation
. constants are discussed in Appendix C, and the possible effects of neglecting the
aerodynamic damping constants when they are not available are discussed in Appendix D.

In the process of providing a systematic development of the equations of motion, several
forms of the equations have been presented in Tables 1 through 5. The equations which
provide the most accurate reduction of the aerodynamic moments, and which require only
those measurements for which the subject AEDC balances are currently instrumented, are
the roll equation of Table 3 and the pitch/yaw equations including sting motion of Tables 4
and 5, Inclusion of additional degrees of freedom in the equations of motion is ineffectual
unless the measurement of additional balance or support deflections is made possible
through additional balance instrumentation,
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Figure 3. Three-degree-of-freedom models of the pitch and yaw planes of the
force-moment balance.

26



AEDC-TR-E1-34

Balance § Balance
Front ‘\ Rear
Y Q\
Out-of-Plane Motion {Balance motlen in the yew plane resulting
from the forced oscillation of the balance in the pitch plane with
the C. F. balancel
Arc Traversed by the Bafance Front As It Oscillates about the
Center of Rotatlon (C.R.} of the C.F. Balance
X
!
te3
Balance Lea — Batance
Front Iy ' Rear

In-Flane Motion (Balance metion in the yaw plane resulting
from the forced osclilation of the balance in the yaw plane
with the C.F. balance)

b. Yaw plane modals {elevation view of balance)
Figure 3. Concluded.

27



AEDC-TR-81-34
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Figure 6. Two-degree-of-freadom model of the pitch or yaw plane of the moment
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Mote: {1} Model is illustrated with pitch plane nomenclature.
Model also applies to the yaw plane with the deflection and laad symbhals changed.

5 . . . .
1t kaaemand cﬂaeru must be included in the oui-of-plane (8, = 0)

model (not ilustrated), as shown in Fig. da.
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Figure 10. Dynamic model of the three-degree-af-freedom moment balance system
including two degrees of freedom of the supporting sting.
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Table 1. Pitch/Yaw Equations of Motion for the Force-Moment Balance
a. Pitch Plane

Out-Of-Plane 2-DOF Motion (Assumes Roll Section Rigid in Pitch and Yaw)

-w? é][l] + I + mltel + m;l&] + w223[m3ec3] + klél + komo(él) + clwiél
-+ Canm (ﬂi'—él = ml

wzel[mstJ] = ‘l’zzj[mal + ng; + C3£.|Ji23 = FZ
Out-Of-Plane 3-DOF Motion {Assumes Roll Section Compliant in Pitch and Yaw)

B[ + L + I + my@y + myy + mys] - w281, + I; + myfey(icr - 6)

+ Myley(les - )] + wZ3[males] + k8 + kg (B, + 8 + ¢)iwd; + ¢ jw
wzéllmsfcsl + wzéz[ms(fcs - 22)] - w223[m3] + k323 + c;f&ﬂzi = FZ

In-Plane 2-DOF Motion {Assumes Roll Section Rigid in Pitch and Yaw)

'wzéllll + 13 + m]fél + mﬂ&] + m223[m3Q:3] + klél + cliﬂiél' wzgo

(1 + I3 + myte (k) - &) + mabealles - )] = M,

[

28, [myley] - Z3[my] + kyZ, + csieZ, - w28[my(4 - £5)] = Fy
In-Plane 3-DOF Motion (Assumes Roll Section Compliant in Pitch and Yaw)

201 + I + Iy + myfgy + mydy + myed;) - 28,1, + I + myley(fer - &) + mykey
(i3 - D]+ Z[mals] - W?B[1 + L + I + myle (b - &) + myle(lc; - &)

+ Myley(les - )] + k6, + cpuif = M,

8 [myles] + 20,[my(ley - )] - 2Z;[my] - 2Bglmy(8 - L)) + ksZ; + cuiZ; = F
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Table 1. Cancluded
b. Yaw Plane

Out-Of-Plane 2-DOF Motion (Assumes Roll Section Rigid in Pitch and Yaw)
-2Y [m; + my] + w?¥;[mye; - )] + k¥, + cui¥, = F,
W%, [( - mgs - B)] - Pl + (MK - 6)°] + ky¥; + cpoi¥y + Ky Ty
+ cﬁmwiq‘;g = M;
Out-Of-Plane 3-DOF Motion (Assumes Roll Section Compliant in Pitch and Yaw)
¥ [m, + my + my] + 2 my(, - 5,) + myllg, - 6)] +
[my(ée; - £)] + k¥, + cwi¥, = F,
- ¥, [ - my)(l; - B)]) - ¥l + (my)(Eey - H)(E; - B)] - 2F[1; + (my)
(- )] + k¥, + iy + k[ + F5] + ¢y wil¥, + T = M,
In-Plane 2-DOF Motion (Assumes Roll Section Rigid in Pitch and Yaw)
- ¥ [m; + m,] + 2¥;[my(f; - B)] - 2F[mg + my(g - i5)] + Y,
+ clwii"l = FY
- Y- mees - B)] - AH3[L + () - 6)7] - ATy - (Mg - £c)
(b3 - B)] + ky¥; + cpi¥; = M,
In-Plane 3-DOF Motion (Assumes Roll Section Compliant in Pitch and Yaw)
Y [m; + my + my] + 2E[my(k, - &) + myll; - B)] + ¥l - B)(m,y)]
T [l + mylly - oy + mylh - L)) + k¥, - o, = Fy
- 5[ - m{ecs B)]- PH[1; + (mHis - B)(ls - B)] - T[Ty + (m3)(tcy - &)
- 215 - (my)(G - £l - B)] + ky¥; + iy = M,
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Table 2. Pitch-Yaw Equations of Motion far the Moment Balance

Ou;-Of-Plane Motion (2-DOF-Assumes Rigid Roll Section)
2B [1 + myy + 1, + my2] - 28,1, + myley(fey - )] + KO, + iuc,B,
+ kg[8, + 8] + iwc,_[6, + 8] =M
- B)l1; + maley(les - B)] - @®5[15 + myliey - 6] + k3B, + iwc,B,

+ Ko oIBy + 8] + ey [6, + 6] = M,
Out-Of-Plane Motion (3-DOF-Assumes Complaint Roll Sectlon)
B, [1) + I, + I; + mfy + myfE, + myik;] - 28,

[ + I3 + myleliy - &)+ mylea(ls - )] - 02651y + myfeylles - 8)]
+ k& + w8, + kg [0, + 8+ §)] + iweg, [6; + 8, + B]= M,

- ?9)[1; + myles(le; - &) - o?8,[1, + my(&e; - £)(Ecy - )]
- 2Byl + my(l, - 6] + KiB, + iy B, + Kooro [y + 8, + B3]
+iwey  [B) + 8, + By] = M,

In-Plane Motion (2-DOF-Assumes Rigid Roll Section)

-0[1, + myfg; + I + myfdy] - 026415 + myles(ls - B)] + kO + iwc, B,
- 21, + Ty + mybe{fey - &} + myles(les - )] = M,

- m3§1[I3 + meCJ(fCJ - fg}]- wzéslla + m;(fc3 - 33)2] + k3é3 + iw03é3 - Wz_e.o
[y + myfey - &)ty - )] = M;

In-Plane Motion (3-DOF-Assumes Compliant Roll Section)
WOl + I + Iy + miy + myy + mys] - B[L + Iy + myfenll, - 1)
+ Myles(les - D] - Byl + myleslis - B)] + KBy + iwcB, - 2B,
[+ L + Iy + myley(f - &) + mafe(les - &) + myleylbey - )] = M,

- 0?8y [I; + myls(ics - B)] - wB,[1, + my(Ly - )by - &) - 2651,
+ my(ley - 6]+ k38 + iwey®; - W?Byl1; + my(t; - B)(Ecs - &) = M,
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Table 3. Roll Equations of Motion

— @?1,(%, + & + &+ F) + kD +iweyd + e, (B + & + B + &) = My
)]

w

{ir-¢

Y] + o Z 4 e g o @

“nioial ktotal

kﬁz = Standard moment measurement obtained from the balance roll gage using a
static gage sensitivity

©nowm = Natural frequency of the total model/balance system in roll

¢, = Mechanical damping of roll gage} Sec Appendix C for these

k, = Spring constant of roll gage constant determination details
Cogero = Aerodynamic damping in roll

K,oa1 = Spring constant of total two-balance system in roll
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Table 4. Equations of Motion for the Force-Moment Balance Including
Two Degrees of the Supporting 5ting
a. Pitch Plane
_wz(Azé'l + Bzéz + Czi} + Dzas + Ezzs + Fzéo) + ksis + Cs@i23= .F-Z
- NZ{Alél + Bléz + CIZ-3 + Dlés + Elis + Fléﬂ} + k]él + koaero

(8 + 8, + 6, + 6y + cywib, + Choeroil@y + B, + 8, + B,) = M,

Constant Definitlons
3-Degree-Of-Freedom Balance (Fig. 3a) 2-Degree-0f-Freedom Balance (Fig.
5a)
A] = Il + Iz + 13 + mlf(z_l + mzféz AI = I] + 13 + m]fél
+ Myt +myfy
Bi= I + 13 + mybcy(ica - &) By = 0
+ myleales — &)
Ci= - miy Ci= - myl
FF=D;= 1 +0L+1+m(e -4 Fy=D = I + I + mic)(i; — &)
+ myfeolley — &) + mytes(fey — @)
+ myles(Bey — &)
E, = - mf — mplcs — mylc Ej = - mfg — myley
Ay = — myiy Ay = - Myics
B, = - myliy — &) By= 0

Notes: (1) For out-of-plane motion 60 =0
(2) For in-plane motion kg and ce - terms should be omitted since
they are the measured loads, i.e., the direct derivatives,
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Table 4; Concludad
b. Yaw Plane

- Uz(Al_f] + Bl?z + CI;S + DIWS + E]is + F]?o) + kl_Y-‘ + cliw?, = FY
— (ASY, + B¥y + Co¥; + D¥ + Y, + F¥g) + k¥ + cyiw¥,

+k¢m@3+¥2+¥0+'\ﬁ)+c¢woi@(73+?z+¥o+is)=ﬁ3

Constant Definitions

3-Degree-Of-Freedom Balance (Fig. 3b) 2-Degree-Of-Freedom Balance (Fig.
Ei=A; =m; + my + my ' E,=A,=r:1b)+m3
By = - myfley — &) - mylles - &) B, =0
C, = - mylles - &) C; = - myliey - &)
Fy = Dy = m + myffy — &g + my% - &) Fy = Dy = myfy + my{fp — &)
E; = Ay = (- m)(tey - &) E; = Ay = — mylées - &)
B, = I3 + (m)(e; - &5 - &) B, =20
C, = I + (m)ee; - &) C; = 1 + (mt; - &)
F, = D; = I; — (m3){fcs - 8)(% - ) Fp=D; = I — (my)(tes - &)
(% - )
Notes: (1) For out-of-plane motion B4 = 0

(2) For in-plane motion k%m and ¢, terms should be omitted since they are the
measured loads, i.¢., the direct derivatives.
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Table 6. Equations of Motion for the Momeant Balance Including
Two Degrees of Freedom of tha Supporting Sting

~w2{(A;0, + BB; + C;6; + D|6, + EZ, +|=‘,|a|(,)+1cea]+1;:‘5,m(ec_,,+e),+el

+

— @ (A8, + By, + C38; + D6, + EyZ, + Fr03) + kyBy + kg

+

Notes:

G + 90) + C](l!lel + Co

B, + 90) + Czﬂézﬁi + Caﬂer

Constant Definitions

3.Degree-Of-Freedom Balance (Flg. 4)

Ay= L+ + 1 + md + myf
+ myf,
By = L+I3+ mbeyller - &)
' + myleylic; - &)
=C = L+ myle(ics — &)
=F= L+L+1+mi,
(k1 - @) + mlrllc -~ %)
+ myleyfes — %)
Ei= = fgmy = {gmy — foms
B, = I+ mylees - &)t - &)
Cr= I + my(t, - 4)?
=F= L+ me - o) - 8)
E;= - myll; — 6)

(1) For out-of-plane motion €, = 0.
(2) For in-plane motion k,wo
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A,

B,

=C|

il

ml(93+62+91+e +90) Ml

nero(§3 + é2 + él

owi(éa + 62 + 61 + és + an) = ﬁ3

2-Degree-Of-Freedom Balance (Fig. 6)

Il + 13 + mlfél + Il'he&

I; + myley{ics; — 4)
Il + 13 + mlftl_

(&) - &)

+ myleyiey - &)
— oMy — feamg

0

L + my(icy - &)
L; + my(ke; - &)

(tc3 - %)

- my(eey - &)

and ¢, terms should be omitted since they are the
measured loads, i.e., the direct derivatives.
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APPENDIX A
) BALANCE DEFLECTION MODE DETERMINATIONS

To interpret data obtained from a dynamic balance system correctly, an accurate model
of the system must be assumed from which the equations of motion are derived. Naturally,
the most accurate model would include both a translational and a rotational degree of
freedom at each flexible balance station and in each plane, i.e., six degrees of freedom must
be assumed and measured at each flexible station. However, the physical size of strain gages
relative to the space available for gage placement on a small balance renders this approach
all but impossible. Even if the instrumentation were possible, the additional accuracy gained
from measuring all of these deflections would not be cost efficient. The most practical
approach is to determine the primary deflection modes of a balance at each flexible station,
instrument the balance to measure these deflections and corresponding loads, and write the
system equations in terms of these primary deflections only.

If a balance is designed to measure a moment at a particular station, its primary
compliance is in rotation at that station since the gage must sense strain attributable to
bending to provide an electrical output proportional to moment. It is kept as rigid as
possible in all other degrees of freedom to limit the extraneous motions which are not meas-
ured. In a similar manner, if a balance is designed to measure a force at a particular station,
its primary compliance is translational at that station. To confirm these primary modes of
deflection of the force-moment C.C. balance, holographic interferometry was used to
provide a graphic illustration of the balance deflections under load over the entire length of
the balance. The technique involves the superpositioning of a deflected balance image onto
the holographically reconstructed image of an undeflected balance. To the extent that the
wavefront propagation directions of the two images have changed, interference fringes form
that are observed superimposed on the image of the balance, The wavefronts will interfere
destructively at points where the distance of deflection is an odd multiple of half the light
wavelength, and constructively where the distance is an even multiple of half the wavelength,
Each successive fringe represents the deflection of an additional wavelength. A raw data
record of such measurements takes the form of a photograph as illustrated in Fig. A-1,
where the force-moment balance is illustrated under a nominal 30-Ib load (directed into the
page) along with the optical fringes.

To obtain the deflection data the balance was rigidly mounted horizontally on an optical
isolation table by the end which is normally attached to the sting. A load was applied to the
free end of the balance horizontal to the table and in a direction normal to the balance axis,
as illustrated in Fig, A-2. The balance was viewed and data images recorded from the side of
the balance opposite to that of the load application, i.e., the free end of the balance
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deflected away from the imaging plane. The balance was illuminated with a He-Ne laser
providing a coherent light source with a wavelength of 0.6328 um. A diagram of the optical
set-up is shown in Fig. A-2.

The deflection curves illustrated by the balance while under a nominal 30-Ib load are
illustrated in Fig. A-3. The deflection curve of the yaw plane shown in Fig. A-3a was
obtained from the raw data photograph shown in Fig. A-1. The difference between the
deflection mode of the forward station (force gage) and the aft station should be noted. The
yaw plane of the forward station is gaged for force measurement and is, therefare, designed
for primary compliance in translation, whereas the aft station is gaged for moment
measurement and undergoes a primarily rotational deflection, The deflection curve (Fig.
A-3a) shows this station indeed to be undergoing a translational deflection much larger than
the translational deflections of the other stations.

Besides providing a verification of the primary deflection modes of the balance, the
balance deflection measurements used in conjunction with the known loads applied to each
of the balance’s flexible stations provided data for obtaining spring constants of each
From the series of three different loads hung in each balance plane, both the translational
and the rotational spring constants of each of the three flexible stations of the force-moment
balance were caiculated. The resulting constants are tabulated in Table A-1. The
translational spring constants of the aft yaw station and the forward pitch station were
impossible to calculate because of the discontinuity in the model surface at these points, as
illustrated for the aft yaw station in Fig. A-1, However, knowledge of these constants is only
academic since these are not the primary degrees of freedom of their respective stations.

The measurements discussed above and the resulting constants tabulated in Table A-1
were obtained during a feasibility study of this proposed calibration technique. The data
obtained do not reflect the kind of precision required from a pretest calibration to be used
for actual wind tunnel data reduction. The study did lead to some conclusions regarding
some possible improvements that could be made to enable a more accurate calibration. The
conclusions are listed below along with some discussion:

1. A calibration body should be used which allows the application of a broad range of
applied moments about each gage while keeping the shear force constant, or vice
versa.
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Rather than displaying the fringes on the balance itself to get angular deflections,
long fringe imaging planes should be attached to the balance sections on either side
of the element to be calibrated. This would enable a higher fringe count over a
known distance, reducing the uncertainty in the angle of rotation. This would
necessitate the calibration of one element at a time.

For calibration of the force (translational) gages or springs, the beam which is
undergoing ‘“S’* bending and on which the fringes must be displayed and counted
should be viewed and illuminated perpendicular to the center of the beam such that
shadows do not hamper the accurate fringe count on the beam,

A large number of points should be taken on each spring, enabling a better
definition of the uncertainty of the resulting spring constant.

Each spring should be calibrated in both directions of load application.

The use of a dual beam interferometry technique should be attempted to obtain a
more accurate measurement of the translation across a force gage. This technique
would use a laser beam reflected from each side of the translational gage using two
retroreflectors secured to the balance surface. If the distance between the parallel
beams, the angular deflection from a previous angular calibration, and the phase
shift between the two light beams are known, the translational deflection could be
determined.
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1t Free End and Directed
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Figure A-1. Photographic record of the yaw plane deflection of the force-moment
balance.
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Balance Deflection x 104, in.

16 |-

20 -

-]
|

Balance (1)

Section

Balance Station, 1n.

2.5 35 4.5 5.% 6.5 1.5
1 ! ! ! \
b |
Ly, ﬁ
X :
-1
30.864 Ib

@

W) = 0.00816 deg = -0. 00372 deg
¥y = 0.000553 in. ¥ = 0.000060L in.

® © O

W3 - 0.0153 deg
Yg= 0°

® O

°y was assumed to be zero since this measurement was not

passible with the measurement technique used.
Balance
Section Load Measured

2 Side Force

4 Rolling Moment

6_ Yawing Moment

Figure A-3.

a. Yaw plane deflactions
Deflections of the force-moment balance.
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1.5
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8y = 0, D0175 deg 83 = -0. 00728 deg
Zz = 0. 0000573 in. z3 = 0. 00008405 in.

*2; was assumed to be zero since this measurement was not
possible with the technique used.

Balance Section Load Measured
2 Pitching Moment
4 Rolling Moment
6 Normal Force

b. Pitch plane deflectlons
Figure A-3. Concluded.
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Table A-1. Force-Moment Balance Spring Constants Determined

Aft

Gage
Station
Balance
Section Si

Roll

Gage

Station
Balance )
Section Four,

Forward
Gage

Station
Balance )
Section Two

NOTES:

(1)

@

3

4

From Interferometer Measurements

Pitch Pitch Yaw ' Yaw
Translation Rotatlon Translation Rotation
(b/in.) (in.-lb/deg) {Ib/in.) . (in.-lb/deg)
425,000+ Note 2 Note 3 2,910
(£ 14%) {x7%)
711,000 49,400 556,000 Note 2
(x32%) {+ 6%) (x11%)
Note 3 7,110* 59,300* 17,300
(£ 6%) {+8%) (+6%)

The spring constants quoted represent the average of three
measurements. The uncertainty band centered about this average
which would include all three values is indicated below each average
spring constant,

These spring constants were negative. Because of the unlikely event
that a negative deflection could result from a positive load, these
spring constants were considered to be in error. It is likely that this
error resulted from the inability to measure this deflection
accurately because of the short balance surface available for viewing
fringes.

The interferometry method used did not provide a means for
measurement of this deflection.

The spring constants for the degrees of freedom for which the
balance is gaged are denoted with an asterisk (*).
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APPENDIX B
DETAILS OF BALANCE EQUATION OF MOTION DERIVATIONS

The details of the derivations of the equations of motion for each of the two AEDC dual-
balance, cross-coupling systems are given on the following pages. The equations were
formulated with the Lagrange approach. The moment balance system required only one

¢ derivation for both the pitch and yaw plane since all gages on this balance are moment gages
and the side and pitch planes can be modeled identically. On the other hand the force-
moment balance required a different model for each of the two planes of motion since one
force and one moment gage are used in each plane, and the force gage is forward in the yaw
plane and aft in the pitch plane. This different relative orientation of the force and moment
gages in the two planes results in a different model and a somewhat different derivation for
each plane.

The three pitch and yaw derivations presented represent the most complex cases that
would be experienced by the balances, i.e., the balance roll section is modeled as an
additional rotational degee of freedom, the sting motion attributable to bending is included,
and the primary forcing motion of the C.F. balance is included to simulate in-plane motion.
The simpler cases which may be of interest, such as the case of two degree-of-freedom, out-
of-plane motion without sting motion, can be obtained from these derivations by setting the
variables and related constants equal to zero which do not apply to the simpler system. For
example, if a system is to be considered which has a completely rigid roll section, then the 6,
variable can be set equal to zero. The two sets of mass and moment of inertia constants
included between gaged stations 1 and 3 must also be combined into one mass and one
moment of inertia. Although it would be possible to present a derivation for any type of
simpler system which could be made from the more complex system, an identical result
could be much more easily obtained by simply cancelling terms in the equations of the more
complex system.

The equations of motion were derived from Lagrange’s equations, as illustrated below.

d (L)_ oL, D _ o (B-1)

Lagrange's formulation requires the definition of the dissipation function D, the generalized
forces Qij, and the Langrangian L, which is a function of kinetic energy (T) and potential
energy (V).

Four separate derivations are presented in the pages that follow. Since each derivation

was formulated with a specific model in mind, each omne is begun with a diagram of the
dynamic model to which it applies. Following a sketch of the dynamic model, each
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derivation includes the following steps: (1) definition of the center of gravity translations
and translational velocities from which kinetic energy is calculated, (2) definition of the
potential and kinetic energies, {3) definition of the dissipation function from the velocities
and damping constants, and (4) definition of the generalized forces which apply to the
various generalized coordinates. Following these definitions, the quantities are
differentiated and substituted into the general formula for Lagrange’s equations given
earlier to yield the equations of motion.

The derivation of the roll equation of motion applies to either balance since they are
modeled identically, The roll derivation was somewhat simpler since the masses between the
springs were neglected. This was thought to be a good assumption since the spectral analyses
of the roll gage signals from both balances exhibited a single predominant frequency,
indicating a relative absence of muitiple modes. The final roll equation has been written in a
form involving the rolling moment gage reading (in moment units rather than displacement
units) and the natural frequency of the total dual-balance/sting system.

Derivation 1. The Moment Balance Equation Derivation

Balance
Front ig

£3
X, —s——ip J
(See note 1)

Netes: {1] Theconstants 85, 2, 20y, £oa Ac3. £32. and 2 are measured posiive (+} forward from tha
forward gage center.
@ Fyand My are the aerodynamic force and moment applied at some location (x) on the mode| surface.

{3 For in-plane motion the terms involving the aerodynamic damping spring constants should be
omltted from the above illustration and from the derivation since they are the loads IF, and My)
baing measured.

(4 For out-of-plana moticn &y = 0.
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C.G. Translalions
Zey = 7, + &fy + 6) — &)(8, + 8, + &)
Zeon = 2, + &8 + 6) — &8 + 6y + 6,) — (€ca — )6, + 8, + 6, + 6,)

Zeys = 2 + 46 + 8) — &(6 + 0y + 8) — (& — )0, + 6, + 6, + 8,)
— (g —6)O + 8+ 0, + 0, + 0)

z, — (& — &) + 0)

Zp
C.G. Translational Velocities:
iy =& — {fg — L6 + 6)
e, = 2, + Ly + 6)) — i, (6, + 6, + 6)
g = 2, + BBy + 6) - (6, + & + 6) — (bey — B)(6, + 6, + 6, + 6,)

iy = 3 + By + 6) - (6, + 6 + 6) ~ (& - B)E, + 6, + 6, + 6)
- (ECI - f])(a.l + 8-0 + 6.5 + B.z + 803)

Kinelic Energy:

T = VemgiZ + WKIH2 + WIg(6, + 4 + uL(6, + 6, + 6)°
+ L6 + 6 + 6 + 6,)* + KWL (6, + 6, + 6, + 6, + 6,)2
+ vamgli + (6, + 612 + Yim,[z, + (6, + 6)
= Iey(6 + ty + )2 + vimy[7, + 4,6, + 6) — &6, + by + 6)
~ (fez = &6, + b6y + 6, + &)] + vamy[z, + (4, + 6)
- 56 + 0+ 6) - (& - )6, + 6, + 6 + 6,)
= (te3 — )6 + 6, + 6, + 6, + 6;)]2
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Potential Energy:
+ Vikg (8 + 8 + 6 + 6, + 6)2 + Yak, .o
[z, + &(6, + 8) — &8, + & +8) — (& - &)
(6 + 6+ 6+ 8) — (b — 0)B, + 6 + 8 + 6 + 8)]2

Dissipation Function:

D = Vac, 72 + Yice 2 + Yac,6] + Yoc83 + Vacyld + Vac, (6 + 6, + 6,
+ 0 + 6) + Yac, [z, + (6, + 6) — &6, + 6, + 6) — (¢,-¢,)
6, + 6, + 6, + 6,)]

F — .

Generalized Forces (Q, = J; aq
L

=Z = f(al, 32, 03, Zs, ﬂo, 85)

= Zs + fﬂ(oo + 05) - fz(el + 60 + 95) - (-83
+8) — (x —2)(6, + 6, + 6 + 0, +8,)

"cfl = Fz X1
- )0, + 8 + 8,

::}-3=M]f X2=e
B+ 6, + 8, + 8, + 6,

( )+M(""’) F( - x) + M(1)
EMI

*.Q, = the moment causing the deflection 0,

(6‘92)+M(;:) - F(x - 5) + M,

".Q, = the moment causing the deflection §, = M,

Lagrange’s equation for 0,, the forward moment gage deflection

aL + aD =M,

a8, a6,

dt ( 6‘91
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LG, + 6+ 0) + L(0, + 8 + 8, + 8) + (8, + 6, + 6, + 8, + 65)
+ my[z, + 48, + 8) — (8, + G + 9;)][ - l"(:1]
+ mylz, + (8, + ) — &6, + 8, + 6) - - 2)
(6, + 6, + 6, + 0)][ — b)) + mylZ, + 80(00 + aJ
— &8 + B+ 8) — (& — IO, + By + 0, + 0) — (63 - &)
G+ 8+ 8+ 8+ )l -t + X8 +Kky_ (6, + 6,
+0,+ 6 +8)+ch +c, (6 +06,+6 +6+6) =M

Note: k 2asr0 and z,

o have been assumed to be negligible in arriving at the above
equation.

[+ L+ 1y + mBy + mety + my]d + [ + Iy + myfelic; — &)
+ myfealles — B8, + [I + myles(ley — )15 + [ - &omy — feom,
— femylz, + [ + I + Iy + myle(fey — &) + mplea(ler — &) + myley
(b ~ @8 + [ + L + I + myl (i) — &) + myley(fes — &)

+ myley(fes — 8))8y + K8y + Ky, (83 + 6, + 6, + 6, + 6,)
+ oy + e (0; 6+ 6, + 6, + 6) =M,

Assume that the balance and sting deflections are sinusoidal, e.g.,

8 = éje"“‘ and z, = Z e,

+ Fy( - o0 + k8, + kg, (65 + 8, + B + 6y + 6) + B,
+ cﬂaem(és + 62 + é] + éo + 65) = .E;Il

The constants A, through F| are defined in the preceding equation and are tabulated in
Table 5.

Lagrange’s Equation for 93, the aft moment gage deflection:

L) 2.2
36y 90,

59



AEDC-TR-81-34

LO; + & + 8, + 6 + &) + my[z, + )8, + B) — &8, + 8, + 8)
(& - )+ 8, + 8+ 8) ~ (b3 — )0y + &, + 8, + 8 + 8)]
[ - (b3 — )] + kyby ~ Kool + 0, + 8, + 8, + 8) + cyf,

+ cﬂm’o(a; + 0.2 + 6'1 + E-O + ﬂ.s) = M3

Note: k, . and ¢, have been assumed to be neglible in arriving at the above equation.

[1; + mybellcs — )18, + [1; + myle; — B)(e; - &)1, + [1; + my(te; — £)°] 8,

+ [ - mylley — &)1Z + [0y + mylees — &)ees — )14, + [1, + m;(fes — b)

(tey — )10, + kaby + ko (B + 0, + 8, + 6, + 8) + coff; + Coprols + b
+3.1+9.0+G;)=M3

Assume that the balance and sting deflections are sinusoidal, e.g.,
8 = éjei“‘ and z, = Z gt

A - 26)) + By( — w26;) + Cyf - «?8,) + Dy - “’zés) - By - wZ)

The constants A, through F, are defined in the preceding equation and are tabulated in
Table 5.
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Derivation 2. The Force-Moment Balance Pitch Plane Equation Derivation

Balance
Front
Balance
Z  Resr
~ My
i3
+Y i—y
{See Note 11 X

Notes: (1l Theconstants 2g, £g. 2c]. 4¢3, Sg3. &nd 2z are measured positive (+) forward from the
forward gage center.

@ F, and M, arethe aerodynamic farce and moment applled at some location {x} an the
model sutface.

) For in-plane motion the terms Invelving the aerodynamic damping and spring constants
should be omitted from the above Illustration and from the derivation since they are
the loads (F, and M.,) being measured.

14 For out-of-plane mt:ltioria0 = 0.

C.G. Translations:
zg =z, — (5 — )6 + 6,)

2oy = 2, + (0 + 6,) - 8(8 + 8, + 8) — (b — &)(8; + 6,
+ 6 + 6)

Zry = Zg + t'o(ﬂo + Gs) - Fz(ﬂo + B] + 95) - (eCJ - PZ)
(6, + 0, + 6, + 8) + z
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C.G. Translational Velocities:
by =2, - (& — B, + 6)
oy =5 + (6 + ) — tei(6 + 6, + 6)
fca =% + bl + 6) — (6 + 6, + 6) - (tey — (6, + 6, + 6, + 6)
Iy =2 + &0, + 6) - 506, + 6, + 6) - (s — &)(6, + 6, + 6,
+ 6) + 5

Kinetic Energy:

T = ¥im32 + 1% + Yamglz — (8 — )6, + 6)]17 + WI4(4, + 4)>
+ e[, + 6y + 6) — &6, + 6 + 617 + MI(6, + 6, + 6)
+ Vimolz, + (6, + ) — (6 + 6, + 6) — (& — )
(6 + 6, + 6, + &) + wLl6, + 6, + 6, + 6)* + m,[z, + ¢
(6 + 6) - 606y + 4 + 6) - (tc — B, + 6, + 6, + 6)
+ 5] + uld, + 6, + 6, + 6,)
Potential Energy:

V = ek, 722 + Yk, 02 + 12k 0] + Yiky83 + Vikgz? + ) S
28y + Vikg, (6, + 0, + B, + 0
Dissipation Function;
D = Y%c, 2% + Vi, B2 + Vac 67 + Vac,B2 + Yacyz} + Vac

+ Yacg (0 + 6 + 6 + §)

+2
Z30r02C3

Fx:
Generalized Forces (Q; = F; a:’ ):
.‘F] = Fz xl == f(ﬂl, 82, 23, ZS’ ﬂo, as)

z=12z,+ 6(8 + 6) - 66, + 8, + 8) — (x — &)
(O + 0, + 8, + 8) + 2z,
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.‘f2=M X2=3

0 =0, +8 + 8 + 0,
q =
Q ~=F (ao,)*M(aa ) = FL - % + M)
Q, = M, = the moment causing the deflection &,

qy =
Q5

( )+M( :” )—F(l)+M(0)

Q, = F, = the force causing the deflection z;

Lagrange’s Equation for 8, the aft moment gage deflection:

( oL + 8]? =M,
20, aty 88,

m,[£, + &(f + 8) — &l + 8, + )] - &) + L,[6, + 6 + 6]
+ m[Z, + 4(f, + ) — 58, + 8, + 6) — (i — €)(B, + b,

+ 8y + I - 2] + LG, + 6, + 6, + 8] + msZ, + £(6, + &)
~ B, + 8y + 6) — (bey — 00, + 8, + 8, + 8) + ][ - £s)
+ LlH + 8 + 6 + 8] + k8 + k(6 + 8, + 8, + 8) + c,6,
+ Cg (b + 6y + G+ 6) = M-

Note: k and ¢ have been assumed to be negligible in arriving at the above

Zaero |
equation.

Zaero

[m,2, + 1, + myfd, + I + myfy + L) + [myfey(lc; — &) + 1,

+ myley(fes — &) + Lo, + [ - myley)éy + [myfe(fey — &) + 1) + myl;
(tez — &) + Ly + myleyles — &) + L8 + [myley(eey — &) + 1j + myfe,
(2 — &) + L + myley{fcy — &) + Ll + [ - myley - myle; — mylsl 7
+ k8 + k,,mm[ﬂ2 + 6, + 0, +8) + cf + c:,,am(ﬂ'2 + 8 + 6+ 6) = M,
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Assume that the balance and sting deflections are sinusoidal, e.g.,
= é']eiwt and Zj = -Z‘jei”t

+ F( - o*8g) + k8, + k,_ (6, + 6, + 6, + 6) + cpwid,
+ ca“mwi(éz + 61 + éo + és) = ﬁl

The constants A, through F, are defined in the preceding equation and are tabulated in
Table 4.

Lagrange’s Equation for z;, the aft moment gage deflection:

' D
__( 3L )_ L, D _p
323 3 ai3

mylZ, + 8(F, + 6) — & + 8y + 8) - (dcy — )b, + 6, + 6, + 8)
+ 23] + kyzy + Ky 23 + O3ty + €, 2y = F
[ - myfealfi+ [ - myltes - D) + [mo(g — 618, + [mylly — L)1,

+ [my]Z + [my); + kyzy + ¢y, = F,

Note: kz“m and ¢
eqguation,

zaero Nave been assumed to be neglible in arriving at the above

Assume that the balance and sting deflections are sinusoidal, e.g.,
= éjei‘ﬂ and z; = Z et
A - 28)) + Bf - ?0,) + Cy - «?Z;) + D - wzes) + B — «?Z )

+ Fo( ~ «®©) + kZ; + cqwiZ, = F,

The constants A, through F, are defined in the preceding equation and are tabulated in
Table 4.
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Derivation 3. The Force-Moment Balance Yaw Plane Equation Derivation

+X —] P
(See Note 1} [* 3 ’

H

Notes: (1) The constants ‘B' ‘D' ‘Cl' ‘cz, 163' ‘2, and lsare méasured ms“lve {+)

forward from the forward gage center.
@ Fy and M, are the aerodynamic force and moment applied at some location ix)

on the model surface,

{3) For in-plane motion the terms involving the aeredynamic damping and
spring constants should be omitled from the above illustration and from
the derivation since they are the loads IF, and M, being measured.

@ For gut-pf-plane motlan 6y = 0,

C.G. Translations:
yp =¥ — (b5 — ) + ¥)
Yo =¥ + Glé + &) + ¥,
Yo=Y+ bl + ) + ¥ — &l + ¥ — (fa — ) + o + %)

YC3=YS+('E0_'EZ)(%+¢s)+YI_(f3_f2)
(#’z + §g + 'l"s) - (?CJ - %)(\05 + ¥y + Yy + 1f's')
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C.G. Translational Velocities:
Yo =¥ — (& — )G + )
Yor = Y, + fo('nio + '!’s) + %
fc2=§s+(fu‘fz)(1f’u+\bs)+fl_(fcz‘@(ki’z"' o + A
Yoz = ¥, + (fo - ﬂ;)('i’o + 'Ps) + 5.’1 - (4 - fz)('f'z + J’o + ‘;’s)
= (ks = 8)(¥; + ¥y + 4y + 4,)
Kinetic Energy:
T = ¥imy? + KLH2 + Yamgly, - (5 — @) + ¥JI° + %Iy + ¥,)
+ l/:ﬂnlh;s + EO('lz'U + ‘I’s) + 3’;!]2 + l-”H]['J’(l + \i’s]2
+ vamyly, + ¥, + (& - e + (§ - ey — (bey — R),)?
+ %Ll + ¥y + ¢]% + mly, + ¥, + (8 - te)d + (& - £3)9,
- (Fc:-l = Ez)’j'z - (fc:; - fa)'&;]z + 1/&13[4',3 + \i’z + 'Lo + 'j’slz
Potential Energy:
V = Uik, y2 + ik, ¥ + Yky? + Yikgt + Vikg? + Yk
Yo + Viky o + ¥ + g + ¥)?

¥ aero

Dissipation Function:

D= I/J-CYsy-g + %cﬂ’sl‘ﬁg + Vzcly.f + lf&cﬂ&g + !’&c3"";§ + 1’écifa.el'tl""(:(233'
+ ‘/ic‘;.m(!ﬁ'z + ¥+t ”’s)z
axj

Generalized Forces (Q; = %4, ):
& = F, Xy =y= f(YI- ¥ai ¥35 Yo ¥ %) = f(‘lp q;. 43 . - )

Y=Yg+(fo—é)(%+\f’s)_yl_(£3—3z)
(2 + 9+ 0 — (x - 8)(¥s + ¥y + Yo + )
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§2=Mz xz='|D

g
l

=V¥3t ¥+ g+ ¥,
q =Y

—F(ayl) +M( )_F(l) + M(0)
Q; = F, = the force causing the deflection y,
4G =¥

Q F(MJ)+M( ) - Bfx - &) + M,(1) = M,

Q; = M; = the moment causing the deflection y,

Lagrange’s Equation for y,, the aft moment gage deflection:
aL aL aD

) - *— y
dy; oy, ay

ml§, + &6 + ¥ + 7] + ml5, + 5 + (& - ¥ + (& - LV,
— (lez - &)l + my[¥, + ¥, + (& — o + (& — ¥ - (8 — &)Y,

— (e - BYVS] + Ky, + Kyaaro¥cs + &1 + ¢y Vo3 = F,
[my + m; + my)iy + [ - my(e, — &) ~ mylee; - BN, + [( - m,)
- Bl; + G + mylfy — te)) + my(ty — €)Y, + [m, + m, + my]¥,
+ [myl + molly — ) + my(ly — &)Y, + ky, + oy =F

i
T

Note: kmm and Cyoero have been assumed to be negligible in arriving at the above
equation.

Assume that the balance and sting deflections are sinusoidal, e.g.,

Al - @) + B{ - w?r‘Ir,) + cl( - wzw,) + Dl( — %) + E( - uZYg
+ F( - «?¥) + kY, + craiY, = F

The constants A, through F, are defined in the preceding equation and are tabulated in
Table 4.,
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Lagrange’s Equation for 35, the aft moment gage deflection:

8103) - M

¥ + ¥y + (€ — ko + (& — ¥, — (s — W — (i — 8)¥4]
[- (s — &)] + LI¥s + ¥, + ¥ + ¥) + kyyy + Kpoerd(¥3 + V2 + ¥g + ;)
+ C3¢3 + C‘#acro(ILa + J’z + J’O + J’s) = M3

Note: kywo and ¢, have been assumed to be neglible in arriving at the above

equation.

[( - m)(ecs - B)IF; + [1y + (my)(ees — &)ty — &)Yy + [1; + (mj)
(fcs ~ 6T + [13 — (m)leey — &G — Eealiy + [( - m)(e, - ALA
+ [ = (m)(f - fe)lles — &)y + kavs + Ky (dg + ¥ + Vo + ¥) + 39
+ey (B + b+ b+ ) =M,

Assume that the balance deflections and sting deflections are sinusoidal, e.g.
¥ = ijei@t and y; = fjei"’l

Af - aPY) + By - ) + Cf - o) + D - W) - B - oY)
+ B — o) + k3\IfJ + ky o(ilf, + ¥+ ¥y + B + cyuidy
+ €y an(\lr, + ¥, + ¥, + ¥) = M,
The constants A, through F, are defined in the preceding equation and are tabulated in
Table 4.
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Derivation 4. The Roll Derlvation

&

g‘]ﬂ?%

/ (' 1 %S aery
M k’aero

Rear View

Balance | m alance

Front

o=
g
=

RIS

I3 12 h lg
fity ma m mg

The C.G.’s of the balance sections and the model are assumed to lie on the balance
centerline, which is the axis of rotation in roll. Therefore, there are no translations or
translational velocities.

Kinetic Energy:

T =

It + L(e + )7 + “ler + & + &) + Wl{dy + & + & + &)°

Potential Energy:

V = k¢? + kol + Kkye? + Vik? + %k¢wo(¢, + By + @y + o)

Dissipation Function:

D = Vicd? + Yecdf + Yicydd + Vacydd + Yo, (& + & + & + 65)°
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r- ax_l

Generalized Force (QJ $i = 3,
$1 = My x; = ¢ = f(dy, 62 63 09

@ =¢+ ¢ + & + &
q =

do

Q =M ( o ) M,(1)
Q, = M, = the rolling moment which causes the roll deflections

Lagrange’s Equation for (bz, the mid-balance roll deflection:

D —
3¢2) 3¢, =M

L(6; + 61 + 6 + If{é; + &, + &, + ¢1) T katy + kg (614 65 + 03 + @)
+ Cypy + Coro(Br + 01 + &y + ) = M,

Since I, < < I, and k,ﬁum< < kj, the terms including these parameters are neglected.

—

Assume that the balance deflections are sinusoidal, i.e., $; = Delr,

— L% + &, + &, + B;) + ko, + cuid, + Conero@i(®r + &, + @,

+ 53) = I;"Ix
[1 - ky Py > (@ + @ + ‘1’2 + ¢3)]k2¢ T czw@
+ c¢mow1({:, + @ + &, + &) = Mﬂ
Substitution: ®; + & + @, + & = Fpgpy; = %

B b+ 8 + By= ot )
total

1 . . - = v
[1 - ,,,213( T~ )] kyby + Couid, + c%man(cbf + &+ By + D) = M,
tat
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. I3 1
Substitution: = 3
ktolal '-"nmm,

[1 - () et + iy + o i@ + @, + B, + 3) = M,
“ntoral

Substitution: k,®, = M;

M; = the apparent moment measured by the
rolling moment gage clement as
determined wusing a static calibration
sensitivity.

[- G

)]M'+—n.:ll\/l,‘+c“s w1<l> =de
M;

Ynyotal

Substitution: &, = -
LoLa

[1- (wnwm) | —auM, + —taew ivg = M,

(-G

)] + wi + —tuero }I;/.I,:= K/[K

ktc:ntal

w“total
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APPENDIX C
THE DETERMINATION OF CONSTANTS NEEDED FOR DATA REDUCTION

Basically there are three types of constants that must be determined before the complete
equations of balance motion can be used: (1) moment of inertia and mass constants along
with c.g. locations, (2) spring constants, and (3) damping constants,

The first type of constants can usually be fairly accurately determined from balance and
model dimensions and the density of the material from which they are constructed. The
moments of inertia of some aerodynamic models are somewhat more difficult to obtain than
the balance inertias since the models often have irregularly shaped surfaces for which it is
hard to calculate a volume. However, through the use of a torque tube or possibly using a
trifiler pendulum it is possible to obtain these inertias to within less than one percent
uncertainty.

The second type of constant, the spring constant, is somewhat more difficult to obtain.
To most accurately model the system, all degrees of freedom permitted by the balance/sting
system must be included in the equations of motion, and a spring constant must be
determined for each of the flexible elements permitting a degree of freedom. However, each
balance is designed and gaged for particular primary degrees of freedom, and other
extrancous degrees of freedom than those which are gaged and monitored are considered
negligible. The confirmation of these primary degrees of freedom and the determination of
these spring constants using holographic interferometry are discussed in detail in Appendix
A. Besides this load versus deflection technique, it is also possible to determine the spring
constants from knowledge of the masses and moments of inertias, as discussed above, and
balance mode frequencies measured with the C.C. balance mounted to a rigid support
(inertial reference frame).

As an example, a solution is given below for the spring constants of a 2-DOF moment
balance on which a known mass is mounted and for which the masses of the ‘*floating”’
balance sections are known. This is 2 model that could be used for the moment balance if the
central roll gage element is considered rigid in pitch. A simplified sketch of the system is
given below,
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 The characteristic equation for such a 2-DOF system is

M(m;;my, + mb) — M(lkym,; + kymy) + kk; = 0
or
Ma) - 2b) +c=0

where a, b, and ¢ are equation constants to be determined, and where the mass terms m,,,
m,,;, and m,, are defined below.

my =1 + mg; + I; + mytly
my, = I + my(f + £ey)?
my = my = L + myfes(ly + fey)

If the balance is mounted to a rigid support, the mode frequencies of such a 2-DOF
system are fairly easy to distinguish when a spectral analyzer is used to display the frequency
content of the freely oscillating balance. Defining these frequencies as

A, = frequency of Ist mode

N

frequency of 2nd mode

they can be used in the above characteristic equation to yield two equations in two
unknowns.

aAf - b\ +¢c =0
aNf —bAM +c =10
These two equations can be solved for b/a and c/a.
From the identities
bra = Mt KiM2 o crp = Kk .
mymy; + mj, myng; + My,

and the known mass constants, m,,, m,,, and m,,, the spring constants k, and k, can be
determined.
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Aside from the mechanical spring constants themselves, the free-stream flow over the
model surface also provides a restoring moment which can be thought of as a spring
constant. This constant, k,, T kg aero? TRUSE be obtained from previous static stability tests
or dynamic stability, d1rect. denvatwe tests. While they are included in the initial steps of the
derivations in Appendix B, they have been neglected in the final equations since they are
relatively small compared to the balance spring constants. In most cases they would
represent much less than one percent of the total spring constant.

The third type of constant, the damping constant, can be divided into two categories: (1)
the aerodynamic damping constants such as c, o and c, acro’ and (2) the mechanical
damping constants of the balance gage elements. As with the aerodynamic spring constants
the acrodynamic damping constants must be known from previous dynamic stability, direct
derivative tests. Unlike the aerodynamic spring constants, the aerodynamic damping
constants cannot be neglected in the equations of motion. They could be of the same
magnitude or larger than the mechanical damping constants. An example showing the
effects of neglecting the aecrodynamic damping constants on a typical test is given in
Appendix D.

The mechanical damping constants can be determined in the laboratory before a test
using a similar procedure to that used to obtain C.F. balance mechanical damping constants.
When the dual balance system with an attached model or calibration body is oscillated in a
vacuum, the aerodynamic force and aerodynamic damping terms drop out. By using a cali-
bration body with known cross products of inertia, a known load can be applied to the
balance. This load will have a real component only, i.e., it will have zero phase with respect
to the impressed balance motion, since it is strictly an inertial load. Using the equation of
motion for the moment balance as an example, the complete equation of motion,

- mz(Alél + Bléz + Clé:! + Dlés + EIES + Fléﬂ) + klé] + clﬁﬂ'é|
+ c,,aemg.,i(éJ + 52 + é, + E_)s + éo) = M,

takes the form

cl“’iél = u’z(Alél + Bléz + Clé3 + Dlés + El_z-s + Flén) - klé] + _r;-[]

or
i = wA; + mBli + mC,—?L + cuD]—?’— + «E, Z:s + wFl—?L
9 6, B, 9, 6
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Therefore,- ¢, is equal to the imaginary part of the bracketed term, and the real part should
be equal to zero. In a similar manner any of the balance equations of motion can be solved
for the mechanical damping constants if the system is oscillated under vacuum.

The roll equation of motion poses a somewhat different problem. In this particular
equation [Eq. (2) of Table 3], the constant c,/k, is required. A simple approach to obtaining
this combined constant can be used if the total system damping is known, similar to the case
described by Buchanan in Ref. 4.

For a single-degree-of-freedom roll system, the equation of motion takes the form

lz‘;z + Cz&z + k2¢2 =M
or

- Wzlziz + c:wiq_:'z + kz‘i’z =M

where the displacement ¢, takes the form ¢, = &, el and the resulting moment is assumed
to take the form Mei¥t, For a two-degree-of-freedom roll system, where the two degrees of
freedom are considered to be the rolling motion of the roll gage of the C.C. balance and the
rolling motion of the C.F. balance, the equation takes the form

(¢ + &) + e + Koty = M
or
- cuzlz(‘;z + 5f) + Cztdiiz + kz‘sz = ﬁ

In this particular equation I, is the total inertia supported by the series of two springs, k, and
k; as shown below.
Ky ke
I3 g1 Frsed
C2 %

The primary difference between the eguations of the two different systeins is that the
deflection in the inertia term of the 2-DOF system includes the deflection of both springs.
For a general static moment M, this total deflection can be rewritten as follows.

ktotnl M(_ T/ ¢2(1 ! _)

WRARRRRARL,

¢Loml =
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where
M = ky¢, = keoy

The 2-DOF equation now takes the form
k; \ = .= - -
- (,,212(1 + _k )@2 + c:ml‘bz + kzq’z =M
f

If the term (I + k,/k;)!, is looked upon as an effective mass, then this equation takes the
same form as the 1-DOF equation, which can be written in the form

LY

. . M .
¢2 + 2-r‘dn¢2 + w§¢2 = HJ% k_ glt + ¥
2

/ ky
“n T V0 + k7kp

_ ) _ Cawn
T2yl + ky/kpw, 2k,

where

and

§

The solution for this system results in the definition of v and k,®,/M as follows:

)
2r @

1 - ()

¥ = t_an-l

k%, 1
N e R A s

By experimentally determining ¥ and k,$,/M, commonly referred to as magnification
factor g, for several values of w/w,, the value of { and w_  can be determined through a
curve-fitting process as was done by Buchanan (Ref. 4). Knowing {, the value of ¢, can be
determined if k, and k; are known, which requires another laboratory procedure. However,
this can be avoided because only the ratio c,/k, is required in the roll. equation of motion.
From the definition of {, the term ¢,/k, can be defined as
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Ca 2 (Y
kz Wy

where w, is the natural frequency of the total system in roll. Although for this 2-DOF system
there would be two mode frequencies, the mass between the two springs is relatively small.
For practical purposes the system behaves like a 1-DOF system with the primary mode
frequency showing up as the above-mentioned single natural frequency. This has been
confirmed by experiment.
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APPENDIX D
THE EFFECT OF NEGLECTING THE AERODYNAMIC DAMPING CONSTANT
FROM THE DATA REDUCTION PROCEDURE

As discussed in Sec. 3.0 and Appendix B, the complete equations of motion require both
mechanical damping constants and aerodynamic damping constants. In some cases the
aerodynamic damping constants may not be available, and it becomes a question of how
accurate the dynamic moment can be if the aerodynamic damping is neglected. There is no
general answer to this question because the aerodynamic moment depends on so many other
parameters besides aerodynamic damping. To illustrate this point the roll equation of
motion will be used with some typical input constants from a previous test run with a dual-
balance system. When all of the constants in the roll equation of motion are input it
simplifies from

{[1 - ()] + e[ & + —2=]} % - M,
“iotal k2 Kol

(G} M- 5

The vector constant by which the measured moment is multiplied serves to demagnify and
phase shift the measured moment M: to yield the aerodynamic load M. The
demagnification constant 1/ would normally not show a significant effect from ignoring
€8ppr SIICE Cnero” Krota1 i Much less than one in most cases. The effect on phase shift (Av)
would normally be more significant since Ay varies directly with the imaginary part
{damping term) for small angles. Therefore, in terms of the final result ﬁx, the primary error
resulting from ignoring Conero would be in the form of a phase error.

to

Using the mechanical characteristics of the 4,000-1b dual balance roll derivative system
used for the roll tests described in Ref. 4, 1/u and Ay are plotted in Fig. D-1 versus
aerodynamic damping for several values of balance system natural frequency in roll, which
was varied by changing roll moment of inertia I,. As mentioned above, the phase shift Avy is
affected significantly while the demagnification constant sees little change. In Fig. D-2 this
phase angle shift is shown in terms of percent error in phase angle for several values of
neglected aerodynamic damping constants. As would be expected, the errors get very large
for small values of phase angle.
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Considering that aerodynamic cross or cross-coupling moments will have small phase
angles, and considering the errors which could result if all of the damping constants are not
well defined, the future of these measurements might be considered bleak at best. However,
below a certain threshold level of cross or cross-coupling damping, these derivatives will be
of little concern to the aircrafi stability anyway, and can be ignored. The high uncertainty in
damping measurements is unimportant. In fact, it might be more correct to quote cross and
cross-coupling moments in their vector form with an absolute uncertainty in phase angle
rather that to divide the moment into its in-phase and out-of-phase (with position)
components.
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NOMENCLATURE

Real part of a complex number

Imaginary part of a complex number
Damping coefficient, ft-lb-sec/rad or lb-sec/ft
Wing mean aerodynamic chord, ft

The damping force or moment attributable to the jth component fi-lb-sec/rad or
Ib-sec/ft

Rolling moment coefficient

aC, /8(gc/2v,,), rad!

Slope of C, versus « curve, 3C, /da, rad -
aC, /&(ac/2V ), rad-!

Center of rotation

Translational aerodynamic damping coefficient in the yaw plane, Ib-sec/ft
Translational sting damping coefficient in the yaw plane, 1b-sec/ft
Translational aerodynamic damping coefficient in the pitch plane, Ib-sec/ft
Translational sting damping coefficient in the pitch plane, Ib-sec/ft
Rotational aerodynamic damping coefficient in pitch, ft-lb-sec

Rotational sting damping coefficient in pitch, ft-lb-sec

Rotational aerodynamic damping coefficient in roll, ft-lb-sec

Rotational aerodynamic damping coefficient in yaw, ft-lb-sec

Rotational sting damping coefficient in yaw, ft-Ib-sec

Energy dissipation function, ft-1b/sec

Voltage

Force, Ib

Oscillation frequency of C.F. balance, Hz
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¥i

on m

-

Load applied to a balance in one of the six degrees of freedom, i.e., a force in the
direction of or a moment about one of the three Cartesian coordinate axes, 1b or
ft-1b

Force vector measured by the jth component, IT"] = Fjei“rj
Magnitude of the force vector of the jth component, 1b
Natural frequency, Hz

Force parallel to the balance y axis, lb

Force parallel to the balance z axis, lb

Force proportional to angular position i.e., the component of the force vector
which is in phase with the oscillatory deflection vector O1,1b

Force proportional to angular velocity, i.e., the component of the force vector
which is 90-deg out-of-phase with the oscillatory deflection vector e, b

V-1 (when not used as a dummy subscript)

Mass moment of inertia supported by the jth component (see Figs. 3 through 6
and Figs. B through 10), slug ft2

Mass moment of inertia about the x axis, slug fi2

Cross product of inertia relative to the xy plane, slug ft2

Spring constant of a pitch/yaw cross flexure balance in roll, ft-lb/rad
Spring constant of the jth component, Ib/ft or ft-lb/rad

Resultant spring constant of a system having two or more springs in series, Ib/ft
or ft-1b/rad

Translational aerodynamic spring constant in the yaw plane, Ib/ft (assumed to be
zero)

Translational spring constant of the sting in the yaw plane, 1b/ft

Translational aerodynamic spring constant in the pitch plane, 1b/ft (assumed to be
zero)

Translational spring constant of the sting in the pitch plane, Ib/ft

Rotational aerodynamic spring in the pitch plane, ft-lb/rad
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Rotational spring constant of the sting in the pitch plane, ft-1b/rad
Rotational aerodynamic spring constant in roll, ft-lb/rad

Rotational aerodynamic spring constant in the yaw plane, ft-lb/rad
Rotational spring constant of the sting in the yaw plane, fi-1b/rad
Lagrangian function, T-V, ft-Ib

The distance from the forward C.C. balance gage to the jth component, ft
Mass, slug

Moment, ft-lb

Mass supported by the jth component, slug (See Figs. 3 through 6 and Figs. 8
through 10)

Amplitude of the vector moment about the jth component, ft-lb
Vector moment about the jth component, ft-1b

Moment vector about a designated model reference point, ft-1b
Moment about the balance x axis, ft-1b

Vector moment about balance x axis, ft-lb

Moment in the balance pitch plane, ft-lb

Moment in the balance yaw plane, ft-1b

Moment proportional to angular position, i.e., the component of the moment
vector which is in-phase with the oscillating defection vector ﬁ, ft-1b

Moment proportional to angular velocity, i.e. the component of the moment
vector which is in-phase with the oscillatory deflection vector 87, ft-Ib

Inertia terms appearing in the characteristic equation of a 2-degree-of-freedom

spring - mass system, slug ft2

Rotational velocity in pitch, rad/sec
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»e

Generalized force relative to the jth component, b or ft-lb
Generalized coordinate, ft or rad

Gage sensitivity, volt/lb or volt/ft-1b

Kinetic energy, ft-lb

Time, sec

Potential energy, ft-lb '
Free-stream velocity, ft/sec

Distance from balance forward gage station measured along balance axis, ft (see
sign conventions on Figs. 1 and 2)

Translational deflection in y-axis direction of the jth component, ft (see sign
conventions on Figs. 1 and 2)

Magnitude of the translational deflection vector of the jth component in the y
direction, ft

Translational deflection vector of the jth component in the y direction, ft

Translational deflection in the z-axis direction of the jth component, ft (see sign
conventions on Figs. 1 and 2)

Magnitude of the translational deflection vector of the jth component in the z
direction, ft

Translational deflection vector of the jth component in the z direction, ft

Angle of attack, deg or rad

Phase of the load vector or the deflection vector of the jth component, deg or rad
Phase of force vector relative to the total deflection vector O, deg or rad

Phase of moment vector relative to the total deflection vector O, deg or rad
Damping factor, { = ¢/2muw,

Pitch plane rotational deflection of the jth component, deg or rad

Magnitude of the pitch plane rotational deflection vector of the jth component,
deg or rad
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§j Pitch plane rotational deflection vector of the jth component, deg or rad

Or Total pitch plane rotational deflection of a wind tunnel model, deg or rad

ET Total pitch plane rotational deflection vector of a wind tunnel model, deg or rad

a Magnification factor

b Roll deﬂectipn of the jth component, deg or rad

P Magnitude of the roll deflection vector of the jth component, rad

51- Roll deflection vector of the jth component, deg gr rad

X; Ordinary coordinates used in the Lagrangian formulation. See Appendix B

¥; Yaw plane rotational deflection of the jth component, deg or rad

¥, Magnitude of the yaw plane rotational deflection vector of the jth component, rad

‘]_fj Yaw plane rotational deflection vector of the jth component, rad

w Oscillation frequency, rad/sec ’

Wy Natural frequency, rad/sec

0101 Predominant (first mode) frequency exhibited by a multispring system, rad/sec

)y Quantity as measured by a balance

) d( )/dt ’

") d?( )/dt?

SUBSCRIPTS

0 Motion as input by the C.F. balance

1 Balance gage element located structuraily nearest the sting support

2 Balance gage element located at mid-balance position and used to measure roll
deflection

3 Balance gage element structurally farthest from the sting support
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B

Cl

C2

C3

That mass or moment of inertia attributed to the ‘‘nonfloating’’ portion of the
C.C. balance

Sting
Cross flexure

Center of gravity of the balance mass located between the forward C.C. balance
gage element and either the roll gage element (for 3-degree-of-freedom balance) or
the aft gage element (for 2-degree-of-freedom balance)

Center of gravity of the balance mass located between the roll gage element and
the aft gage element

Center of gravity of the balance and model mass supported by the aft balance gage
element
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